Spatiotemporally distinct protein kinase D activation in adult cardiomyocytes in response to phenylephrine and endothelin.
نویسندگان
چکیده
Protein kinase D (PKD) is a nodal point in cardiac hypertrophic signaling. It triggers nuclear export of class II histone deacetylase (HDAC) and regulates transcription. Although this pathway is thought to be critical in cardiac hypertrophy and heart failure, little is known about spatiotemporal aspects of PKD activation at the myocyte level. Here, we demonstrate that in adult cardiomyocytes two important neurohumoral stimuli that induce hypertrophy, endothelin-1 (ET1) and phenylephrine (PE), trigger comparable global PKD activation and HDAC5 nuclear export, but via divergent spatiotemporal PKD signals. PE-induced HDAC5 export is entirely PKD-dependent, involving fleeting sarcolemmal PKD translocation (for activation) and very rapid subsequent nuclear import. In contrast, ET1 recruits and activates PKD that remains predominantly sarcolemmal. This explains why PE-induced nuclear HDAC5 export in myocytes is totally PKD-dependent, whereas ET1-induced HDAC5 export depends more prominently on InsP(3) and CaMKII signaling. Thus α-adrenergic and ET-1 receptor signaling via PKD in adult myocytes feature dramatic differences in cellular localization and translocation in mediating hypertrophic signaling. This raises new opportunities for targeted therapeutic intervention into distinct limbs of this hypertrophic signaling pathway.
منابع مشابه
Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both extracellular-signal-regulated kinase and p38 mitogen-activated protein kinase.
G-protein-coupled receptor agonists are powerful stimulators of mitogen-activated protein kinase (MAPK) cascades in cardiac myocytes. However, little is known regarding the physiological activation of enzymes downstream of MAPKs. We examined the activation of mitogen- and stress-activated protein kinase-1 (MSK1), a downstream target of MAPKs, in adult rat cardiac myocytes by phenylephrine and e...
متن کاملRas/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes.
The Gq protein-coupled receptor agonists phenylephrine (PE) and endothelin-1 (ET-1) induce cardiac hypertrophy and stimulate protein synthesis in cardiomyocytes. This study aims to investigate how they activate mRNA translation in adult cardiomyocytes. PE and ET-1 do not activate protein kinase B but stimulate Ras and Erk, and their ability to activate protein synthesis was blocked by inhibitio...
متن کاملp90 Ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to Gq-protein-coupled receptor stimuli, endothelin-1 and α1-adrenergic receptor agonists
ERK1/2 (extracellular-signal-regulated kinase 1/2) and their substrates RSKs (p90 ribosomal S6 kinases) phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. In the present study we investigated the role of RSKs in the transcriptomic responses to the G(...
متن کاملFour-and-a-half LIM domains proteins are novel regulators of the protein kinase D pathway in cardiac myocytes
PKD (protein kinase D) is a serine/threonine kinase implicated in multiple cardiac roles, including the phosphorylation of the class II HDAC5 (histone deacetylase isoform 5) and thereby de-repression of MEF2 (myocyte enhancer factor 2) transcription factor activity. In the present study we identify FHL1 (four-and-a-half LIM domains protein 1) and FHL2 as novel binding partners for PKD in cardia...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 38 شماره
صفحات -
تاریخ انتشار 2011